

Wirtschaftlichkeit der Umstellung von Vor-Ort-Verstromung auf Biomethanproduktion

Friedrich Brandes und Georg Siegert

Gründe für die Umstellung von vor-Ort-Verstromung auf Biomethanerzeugung

Warum Umstellen von vor-Ort-Verstromung auf Biomethanerzeugung?

Biomethanerzeugung?

Anpassungsmöglichkeit an steigende Kosten Vielseitige Biomethanvermarktungs-

keine EEG-Auflagelast

Steigender

Biomethanbedarf in allen

Höhere Umsätze, größere Gewinnspanne bei angepasstem Substrateinsatz Verringerter Arbeitszeitbedarf für Wartung von BHKWs

i.d.R. höhere Verfügbarkeit von BGAA ggü. BHKW

Vielversprechende Rahmenbedingungen für die Biomethanproduktion

Wann ist ein Wechsel weg vom EEG hin zu Biogasaufbereitung sinnvoll?

- bei hohen Einsatzstoffmengen an Wirtschaftsdüngern → höherer Wert des Biomethans durch niedrigen THG-Wert
- wenn ein Gasnetz mit entsprechender Aufnahmekapazität oder ein Abnehmer mit mobiler Technik in der Nähe ist
- bei störungsanfälligen BHKWs
- kann in Kombination mit EEG ohne BHKW-Zubau oder Eigenstromerzeugung sinnvoll sein
- bei entsprechender Flächenverfügbarkeit
- hohe Investitionskosten → Liquidität notwendig

Quelle: FNR-Leitfaden

Biomethanerzeugung in Kombination mit Strom- und/oder Wärmeerzeugung

Eigenwärmeversorgung mit Biogaskessel Eigenwärmeversorgung mit Hackschnitzel

Eigenwärmeversorgung mit Wärmepumpe Biomethanerzeugung in Kombination mit...

EEG-Stromerzeugung

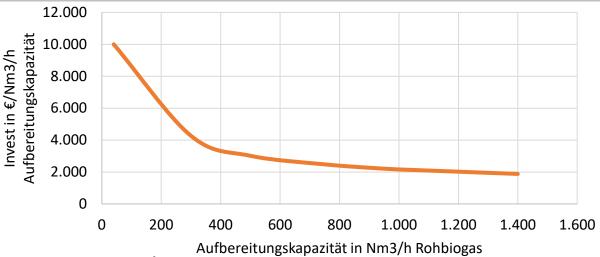
EEG-Stromerzeugung und Eigenstromerzeugung

Eigenenergieerzeugung über BHKW

Unterschiede Verstromung/Biomethanerzeugung 500 kWel

	Verstromung	Biomethanerzeugung
Genehmigung	Bei negativer Flexibilisierung geringer Aufwand über Anzeige (§ 15 BlmSchG); Erhöhung der inst. –/Bemessungsl. = i.d.R. neue Genehmigung nach BlmSchG	i.d.R. neue Genehmigung nach BImSchG notwendig
Substrate	Auswahl eingeschränkt durch Maisdeckel	Auswahl eingeschränkt durch Biomethanliefervertrag; höhere Vergütung für Wirtschaftsdüngergas
Vorreinigung Rohgas	Entschwefelung und Kondensatabscheidung	mehrere Entschwefelungs- einheiten und Kondensatabscheidung; ggf. Reinsauerstoffdosierung
Kosten für Technik	Flexibilisierung ca. 700.000- 1.500.000 €	Aufbereitungsanlage mit Netzanschluss < 1km ca. 1,5-2,5 Mio. €

Unterschiede Verstromung/Biomethanerzeugung 500 kWel



	Verstromung	Biomethanerzeugung
Wartungsaufwand/ Personalbedarf für Wartung	Hoher Wartungsaufwand durch bewegliche Teile; nach BHKW- Anzahl linear steigend; i.d.R. kein Vollwartungsvertrag	Hohe Volllaststundenzahl bei vgl. wenig Wartungsaufwand; i.d.R. Vollwartungsvertrag
Aufwand für die Vermarktung des Produkts	gering durch staatl. garantierte Vergütung; ggf. Absprachen mit Direktvermarkter zu Flexbetrieb	Eigene Auswahl des Käufers; wiederkehrende Ausschreibung; Vermarktung von Überkapazitäten/Beschaffung von Ausgleichsenergie
Zertifizierungs- auflagen	Geringe Auflagen; Umweltgutachten, Nachhaltigkeitszertifizierung der Biostrom-NachV bei >2 MW FWL; THG-Bilanzierung ab 2026 bei >15 Jahren Betriebszeit der BGA (80% Minderung)?	Je nach Substrat Biostrom- NachV und/oder BioKraft-NachV verbunden mit Massenbilanz, THG-Bilanz und Chargenmanagement; Eintragung in Nabisy, dena Biogasregister und demnächst UDB; Berichts/Nachweispflicht BEHG

Wirtschaftlichkeit der Biomethanerzeugung

Investitionspositionen

- Weitere Investitionspunkte:
 - Ab 250.000 € Regenerative Thermische Oxidation (RTO))
 - häufig neues BHKW mit angepasster Leistung bei Eigenstrombereitstellung: ab ca. 200.000 € je nach Größe des BHKWs
 - Ggf. Abdeckung offener Behälter
 - Reinsauerstoffdosierung ab ca. 40.000 €
 - Erdarbeiten und Fundament, Medienarbeiten
 - Kosten für Genehmigung
 - Kosten für Netzanschluss: 250.000 € bei <1 km Netzanschlusslänge, sonst 25 % von Gesamtkosten für Netzanschluss

Wirtschaftlichkeit der Biomethanerzeugung

Betriebskosten

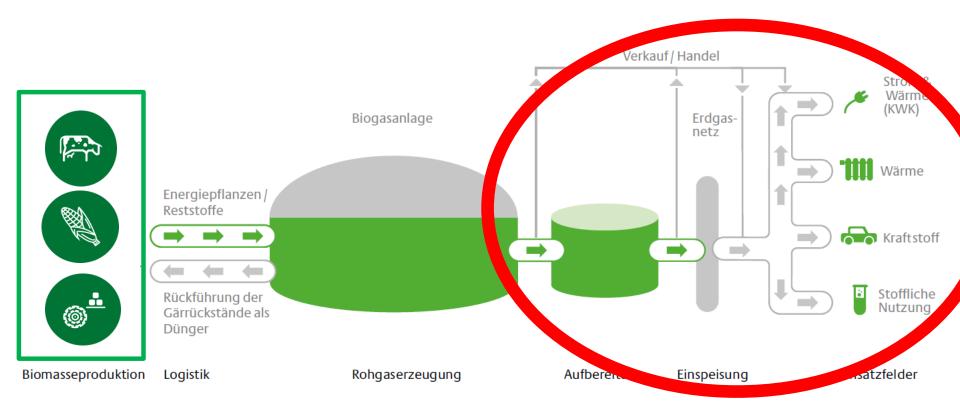
Strombedarf 0,06 – 0,33 kWh/Nm3 RBG -> größter kaum zu beeinflussender Kostenpunkt

Versicherung
-> abhängig vom
Versicherungsbedürfnis
und Investitionsvolumen

Personalkosten

Betriebskosten

I.d.R.Vollwartungsvertrag-> ab ca. 30.000 €/a


Zertifizierungskosten ca. 10.000 €/a -> Abhängig von: Datenpflege nabisy/biogasregister, Anzahl Biomasselieferanten,...

Weitere Kosten:

- Verbrauchsmaterial
- Wärme (Aminwäsche)
- Bilanzkreisführung (falls selbst übernommen)

Vermarktung Biomethan

Quelle: biogaspartner, 04.06.2024

Wirtschaftlichkeit der Biomethanerzeugung Erlöspotential

Gülle/Mist – Biomethan

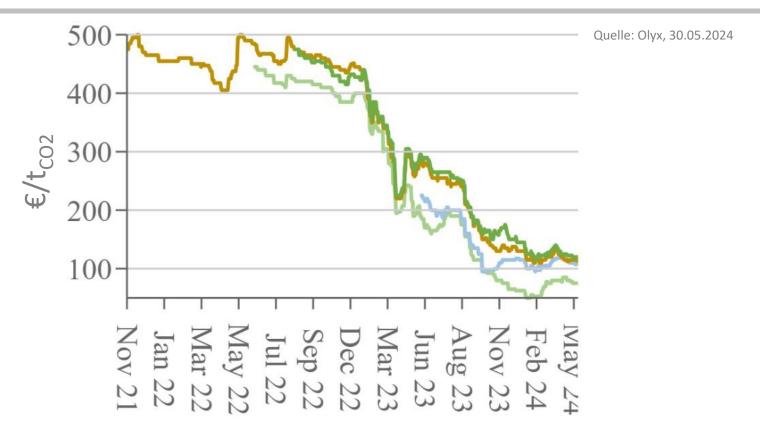
(- 100 g_{CO2equ.}/MJ)

- Doppelanrechnung
 ca. 13 ct/kWh_{Hs} (Basis)
- Einfachanrechnung
 ca. 9 ct/kWh_{Hs} (Basis)
- i.d.R. maximale Vertragslänge bis 2030

NawaRo – Biomethan

 $(30 g_{CO2equ.}/MJ)$

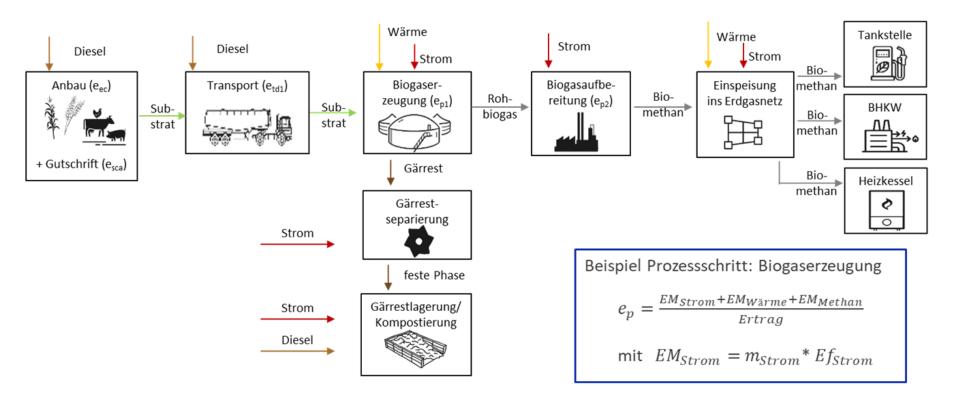
- Einsatz im EEGoder Wärme-Sektor
- ca. 8,5 bis 9 ct/kWh_{Hs}
- Abnahmeverträge über 2030 hinaus möglich


Reststoff – Biomethan

 $(15 g_{CO2equ.}/MJ)$

- Einsatz Sektor offen
- ca. 9 bis 10 ct/kWh_{Hs}
- Abnahmeverträge über 2030 hinaus möglich
- Erlös abhängig vom Treibhausgasminderungspotential des Biomethans
- THG-Quotenpreis bestimmt Biomethanerlös maßgeblich

Wirtschaftlichkeit der Biomethanerzeugung **Treibhausgasquotenpreis**



- z.T. fälschlicherweise ausgestellte Zertifikate, ...
- Ausblick: Verschiedene Erfüllungsoptionen entfallen, andere kommen hinzu
- Ansteigende Treibhausminderungspflicht für Inverkehrbringer von Kraftstoff

Biomethanhandel Treibhausgaswert Berechnung

 Voraussetzung für die Vermarktung im Kraftstoffsegment ist eine Zertifizierung nach REDCert und die Eingabe in die Nabisy-Datenbank der BLE.

CO2-Verfüssigung als Veredlungsoption für Biomethanerzeugung?

Kosten

- Invest: entspricht ca. Investkosten für BGAA
- zzgl. 250.000 500.000 € Qualitätsmessgerät (EIGA 70/17)

Chancen

- Reduktion des THG-Wertes um 20-40 g_{CO2eq}/MJ
- 2-4 ct/kWh_{Hs} Mehrerlös für Gülle-Biomethan
- Erlös des LCO2 geringe Bedeutung

Hinweise

- Strombedarf: 0,2-0,28 kWh/kg_{LCO2}
- Fossiles CO2 muss nachweislich ersetzt werden
- i.d.R. keinen Einfluss auf Erlös NawaRo-Biomethan

Begrenzter Absatzmarkt in Deutschland und regional sehr unterschiedlicher Bedarf

Wie wirkt sich eine Umstellung auf Biomethanproduktion auf die Wirtschaftlichkeit meiner Anlage aus?

Beispielerlös für 1 m³ Biogas

Annahmen: **30 Ma.-% Maissilage, 70 Ma.-% Rindergülle** (vereinfacht 50% CH4)

18 ct/kWh EEG-Erlös, 5 ct/kWh Wärmeerlös (BHKW: 40% Wirkungsgr.)

13 ct/kWh_{Hs} Gülle/Mist-Biomethan, 9 ct/kWh_{Hs} NawaRo-Biomethan

Erlös EEG	Erlös Biomethanverkauf (96,5% CH4)
35,89 ct/m³ Stromerlös	17,88 ct/m³ Wirtschaftsdünger-BM
10,00 ct/m³ Wärmeerlös	35,78 ct/m³ NawaRo-BM
Summe: 45,89 ct/m ³ Biogas	Summe: 53,75 ct/m ³ Biogas Zzgl. 3,75 ct/m3 vNNE

Annahme: 100% Wirtschaftsdünger

Erlös EEG	Erlös Biomethanverkauf (96,5% CH4)	
35,89 ct/m³ Stromerlös	71,96 ct/m³ Wirtschaftsdünger-BM	
10,00 ct/m³ Wärmeerlös		
Summe: 45,89 ct/m ³ Biogas	Summe: 71,96 ct/m ³ Biogas	
	Zzgl. 3,75 ct/m3 vNNE	

Chancen und Risiken der Biomethanproduktion

Anstieg des
Biomethanbedarfs
in den nächsten
Jahren laut dena

Importe (Biomethan, Biodiesel, LNG) drücken den Biomethanpreis

Chancen &

Industrie und Gewerbe sucht nach Biomethan Herausforderungen

RED II/RED III sichert gesetzlichen Rahmen bis 2030

NawaRo-BM für EEGund Gebäudesektor (GEG)

Vielen Dank für Ihre Aufmerksamkeit!

M.Eng. Georg Siegert
M.Sc. Friedrich Brandes

Institut für Biogas, Kreislaufwirtschaft & Energie Dr.-Ing. Frank Scholwin

